

Isabelle Tutorial:
System, HOL and Proofs

 Burkhart Wolff
(with contributions by Makarius Wenzel)

Université Paris-Sud

What we will talk about

What we will talk about
 Isabelle with:

! Elementary Forward Proofs

! Tactic Proofs (“apply style”)

! Proof Contexts and Structured Proof

Introduction to
tactic backwards

“apply style” proofs in
Isabelle/HOL

Simple Proof Commands
! Simple (Backward) Proofs:

– where <contextelem> declare elements of a
proof context Γ (to be discussed further)

– where <proof> is just a call of a high-level
proof method by(simp), by(auto), by(metis),
by(arith) or the discharger sorry
(for the moment).

lemma <thmname> :
[<contextelem>+ shows]”<φ>”
<proof>

Processing <proof>

● In certain global commands requiring <proof>,
the system enters into a “proof mode”

● This means, a proof state is created by

 Γ ⊢T B ⟹ B

refined by proof methods, and the required
thm is finally extracted from it.

How to Declare Structured Goals
! (Simple) Context Element Declarations are:

– fixed variables: fix <x> [:: <τ#]

– assumptions: assume [<thmname>:] „<φ>“

 and [<thmname>:] „<φ>“

How to Declare Structured Goals
! In contrast (Rich) Context Elements are:

– fixed variables: fixes <x> [:: <τ#]

– assumptions: assumes [<thmname>:] „<φ>“

– local definition: defines <x> ≡ <t>

– reconsidering facts: notes a1=b1 … an=bn

– intermed. results: have [<thmname>:] „<φ>“<proof>

The Syntactic Category <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>) (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
 done <method>

– structured proofs:
proof (<method>) … qed

The Syntactic Category <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>) (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
 done <method>

– structured proofs:
proof (<method>) … qed

Simple Proof Commands

! Simple (Backward) Proofs:

example:
lemma m : "conc (Seq a (Seq b Empty)) (Seq c Empty) =

 Seq a (Seq b (Seq c Empty))"
 by(simp)

schematic_lemma
 m' : "conc (Seq a (Seq b Empty))(Seq c Empty) =
 ?X"
 by(simp)

lemma <thmname> :
[<contextelem>+ shows] “<phi>”
 <proof>

Backward procedures: “tactic”s

● Concept: tactic is a RELATION on thm's.
(mirroring non-determinism in the choice
 of unifiers or premisses)

● ... implemented in SML:

 thm -> thm Seq

● ... allowing to go
– backward (via apply(...))
– alternatives (via back)

A Summary of Proof Methods

● low-level procedures and
versions with explicit substitution:

– assumption
– rule_tac <subst> in <thmname>
– erule_tac <subst> in <thmname>
– drule_tac <subst> in <thmname>

● … where <subst> is of the form:
x

1
=”φ

1
” and x

n
=”φ

n

A Summary of Proof Methods

● low-level procedures:
– assumption (unifies conclusion vs. a premise)
– subst <thmname>

 does one rewrite-step
 (by instantiating the HOL subst-rule)

– rule <thmname>
 PROLOG - like resolution step using HO-Unification

– erule <thmname>
 elimination resolution (for ND elimination rules)

– drule <thmname>
 destruction resolution (for ND destriction rules)

Demo IV

● Simple apply-style proofs
– build demo4 based on demo3
– prove apply - style:

lemma m : "conc (Seq a (Seq b Empty)) (Seq c Empty) =
Seq a (Seq b (Seq c Empty))"

lemma rev_c : "(reverse (Seq a (Seq b Empty))) =
(Seq b (Seq a Empty))"

lemma conc_assoc: "conc (conc xs ys) zs = conc xs (conc ys zs)"

lemma reverse_conc: "reverse(conc xs ys)=conc(reverse ys) (reverse xs)"

lemma reverse_reverse: "reverse (reverse xs) = xs"

Resolution

● low-level procedures:
– rule <thmname>

Resolution

● low-level procedures:
– rule <thmname>

Resolution

● low-level procedures:
– rule <thmname>

Resolution

● low-level procedures:
– rule <thmname>

Resolution

● low-level procedures:
– rule <thmname>

Resolution

● low-level procedures:
– rule <thmname>

Resolution

● low-level procedures (lifting over parameters):
– rule <thmname>

Resolution

● low-level procedures(ligting over parameters):
– rule <thmname>

Resolution

● low-level procedures(ligting over parameters):
– rule <thmname>

E-Resolution

● low-level procedures:
– erule <thmname>

E-Resolution

● low-level procedures:
– erule <thmname>

E-Resolution

● low-level procedures:
– erule <thmname>

E-Resolution

● low-level procedures:
– erule <thmname>

D-Resolution

● low-level procedures:
– drule <thmname>

D-Resolution

● low-level procedures:
– drule <thmname>

D-Resolution

● low-level procedures:
– rule <thmname>

D-Resolution

● low-level procedures:
– drule <thmname>

Backward Proofs: Example I

● Example:
 lemma “A B → B A”∧ ∧

apply (rule impI)
apply (rule conjI)
apply (rule conjunct2) - schematic state
apply assumption
apply (rule conjunct1) - schematic state
apply assumption
done

Backward Proofs: Example II

● Example:
 lemma “A B → B A”∧ ∧

apply (rule impI)
apply (rule conjI)

 apply (erule conjunct2)
 apply (erule conjunct1)

done

Backward Proofs: Example III

● Example:
 lemma ex8 1: ”(x. p(x)) →(x. p(x))” ∀ ∃

apply(rule impI)
apply(rule exI)
apply(erule spec)
done

Backward Proofs: Example IV

● Example:
 lemma all_istr: "(x. A B(x)) = (A (x. B(x)))"∀ ⟶ ⟶ ∀

apply(rule iffI) apply(rule impI)
apply(rule allI) apply(rule mp)
apply(erule spec) apply(assumption)
apply(rule allI) apply(rule impI)

apply(rule spec) back

apply(drule mp)
apply(assumption)+
done

Demo V
● Exos

– (A B) (C D) → (B C) (D A)∧ ∧ ∧ ∧ ∧ ∧

– low and high-level:
 s (s (s (s (zero)))) = four p(zero) ∧ ∧
 (x.p(x) p(s(s(x)))) p(four)∀ → →

– (x. y.p(x, y)) (y. x.p(x, y))∃ ∀ → ∀ ∃

– (x.p(f(x))) (x.p(x))∃ → ∃

A Summary of Proof Methods
● advanced procedures:

– insert <thmname>
 inserts local and global facts into assumptions

– induct “φ”

searches for appropriate induction scheme using
 type information and instantiates it

– cases “φ”, case_tac “φ”

 searches for appropriate induction scheme using
 type information and instantiates it

A Summary of Proof Methods

● advanced automated procedures:
– simp [add: <thmname>+] [del: <thmname>+]

 [split: <thmname>+] [cong: <thmname>+]
– auto [simp: <thmname>+]

 [intro: <thmname>+] [intro [!]: <thmname>+]
 [dest: <thmname>+] [dest [!]: <thmname>+]
 [elim: <thmname>+] [elim[!]: <thmname>+]

– metis <thmname>+
– arith

What we will talk about
 Isabelle with:

! Elementary Forward Proofs

! Tactic Proofs (“apply style”)

! Proof Contexts and Structured Proof

Structured Proofs in <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>) (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
 done <method>

– structured proofs:
proof (<method>) … qed

The Syntactic Category <proof>

● structured proofs:
– can be nested
– allow to declare sub-goals

declaratively
(eased by pattern-matching and abbreviations)

– subgoals were matched against the
proof context
(order irrelevant, lifting irrelevant)

– allow for advanced notation
for matching constructs following
induction and case distinction

– extensible (see ITP2014: “Eisbach”)

The Syntactic Category <proof>

● structured proofs:
 proof (<method>)

 <subgoal>
{next
 <subgoal>}*
qed

● subgoals:

 <rich context element>* show “φ”

Rich Proof Context Elements
! These are

– fixed variables: fixes <x> [:: <τ#]

– assumptions: assumes [<thmname>:] „<φ>“

– local definition: defines <x> ≡ <t>

– reconsidering facts: notes a1=b1 … an=bn

– intermed. results: have [<thmname>:] „<φ>“<proof>

– case - statements: case (<cons> <var>*)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

